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Lawrence Berkeley National Laboratory

A US DOE National Lab operated by University of California
Founded in 1931

13 Nobel Prizes

> 3,000 Employees

> 1500 IP licenses for software and inventions in last 10 years:
> 50 Startups based on Berkeley Lab technology

e >200 UC faculty on staff at LBNL
* Annual operating cost $872M (FY 2018)
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Dedlicated to solving the most pressing scientific

problems facing humankind.

Bio Sciences

Computing Sciences

Earth & Environmental
Sciences

Energy Sciences

Energy Technologies —

Physical Sciences
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Building Technology &
Urban Systems

FLEXLAB & Systems Integration; Modeling
& Simulation; Windows & Daylighting;
Lighting & Electronics; High-Tech &
Industrial; Urban Science

Energy Analysis &
Environmental Impacts

Electricity Markets and Policy; Energy
Efficiency Standards; Indoor Environment;
Sustainable Energy Systems; International
Energy ' '

Energy Storage &
Distributed Resources

Researchers perform analysis,
research, and developmentina
wide range of topics to improve
energy infrastructure and
maximize socio-economic
benefits —from buildings and
batteries, to indoor air quality,
electricity grid, transportation,
and environmental impacts.

Researchers have been
providing technical support to
U.S., China, India, Mexico,
Brazil, and other developing
economies to improve energy
policies and programs.



Low GWP Refrigerants

B Underthe Kigali Amendment to the Montreal Protocol, 197 countries committed
to cut the production and consumption of hydrofluorocarbons (HFCs) — potent
greenhouse gases (GHGs) used in refrigeration and air conditioning — by more
than 80 percent over the next 30 years.

Business as usual

Control CO2 only

Control SLCPs only

Control both CO2 and SLCPs
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UNEP (2011). HFCs: A Critical Link in Protecting Climate and the Ozone SLCP: short lived climate pollutants
Layer Hu et al. (2013). Mitigation of short-lived climate pollutants

slows sea-level rise. Nature Climate Change
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Space Cooling Energy Use

B GHG emissions related to the use of energy for space cooling hinge primarily on
the fuel mix in power generation - fossil fuels accounted for 65% of globally
total power generation in 2016.

CO, emissions associated with space cooling energy use
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Source: IEA (2018). The Future of Cooling.
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Space Cooling Energy Use

B Increasing incomes and urbanization - as well as a warming climate - are
driving up the global stock of ACs, particularly in emerging economies with hot
climates. Accordingly AC energy consumption and related GHG emissions are
expected to increase substantially as the stock of ACs rises.

Energy use forecast in air-conditioners
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Source: IEA (2018) The Future of Cooling
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Low-GWP Refrigerant and

Energy Efficiency

B LBNL studies find that it is highly beneficial to pursue high energy-efficiency in
concert with the transition to lower global warming potential (GWP) refrigerants
to achieve maximal GHG reductions with the least amount of equipment re-
design and replacement.
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Abhyankar et al. (2017) Accelerating Energy Efficiency

Improvements in Room Air Conditioners in India: Potential,

Costs-Benefits, and Policies. LBNL report.
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Shah et al. (2019) Benefits of Energy Efficient and Low-Global
Warming Potential Refrigerant Cooling Equipment. LBNL
report.



Opportunity for Market

Transformation

Simultaneous Efficiency Improvement and Refrigerant Transition

B Air-conditioners and refrigeration appliances are often first products
regulated for energy efficiency and will also undergo refrigerant
transition under Kigali Amendment or current Montreal Protocol
obligations.

B Refrigerant transition and efficiency improvement both typically
require redesign of appliances and re-tooling of manufacturing lines.

B Coordinated efficiency improvement with refrigerant transition can
keep costs low for consumers, manufacturers, utilities and
governments.




C"m_ate Reglon a"_d . Policy action can be regionally developed/adopted, as
Cooling Energy Efficiency

well as harmonized with other regions.

Cooling-degree days (CDDs) across the world, mean annual Outdoor temperature distribution of eight regions in Brazil
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Policy and Market

Transformation

L] Policy action and market transformation can be accelerated and
effectively harmonized with international effort.

/| Clear scope and definitions
I Common efficiency metric

I Common testing standards
Approach
v’ Catalyze product innovation, giving
consumers more choice
v" Harmonize requirements to reduce trade
MODEL REGULATION GUIDELINES  scrowtaon barriers and unlock economies of scale to
ENERGY-EFFICIENT AND make products more affordable
CLIMATE-FRIENDLY AIR CONDITIONERS \/ Enab|e more effective market
QR o & enforcement using proven test
procedures and an easier exchange of
compliance information
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Other Research

B Efficiency for Energy Access
B Renewable Energy and Efficiency
M Distributed Energy Resources

B Building Energy Efficiency
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Efficiency for Energy Access

B About 1.1 billion people in
the world, largely in
developing Asia and sub-
Saharan Africa, do not
have access to electricity.
Energy efficiency supports
increased clean energy
access and improved
service.

2009 - SHS with
standard appliances
sodard appanc _
standard appliances
2014 - SHS with
super-efficient appliances
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Population without access to electricity, 2016 (millions)
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IMPACT OF OFF-GRID SUPER-EFFICIENT APPLIANCES ON CLEAN ENERGY ACCESS

Energy efficiency supports increased clean energy access and improved service

P

The same system paired
with super-efficient
appliances provides greatly
enhanced energy service:

Appliance super-efficiency
also enables much smaller
and more affordable energy
systems to provide equivalent,
and even superior, service.

An energy systemith =
40 Wp solar panel and
70 Ah battery will power

GREATER
ACCESS
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Renewable Energy and Efficiency (U.S.)

RE additions continue at a robust
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Source: LBNL/NREL (2018). Wind Technologies Market Report Bulldings by 2020

B State clean energy policies are

015 2016 0m 2018 2019 2020

strengthening -- California’s Senate Bill (SB)

100 established a landmark policy requiring
renewable energy and zero-carbon resources

supply 100% of electric retail sales to end-use & Reéncwabis nstaed
customers by 2045.

Source: California Energy Commission
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Distributed Energy Resources

B LBNLUs Distributed Energy Resources

Customer Adoption Model (DER-CAM) is a @

comprehensive decision support tool that
help users find optimal distributed energy
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electricity — : typically operates connected to and
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engines

Distributed Energy Resources

MICROGRID.
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. Source: LBNL Energy Storage and Distributed Resources Division
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City Building Energy Saver LBNL's CityBES a web-based computing platform, specialized on energy
(CItYBES) modeling, benchmarking and performance visualization of a city's building
stock to support district or city-scale energy efficiency programs.

CityBES  Introduction PEOERE N Retrofit Scenarios  Simulate  Team
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- Aggregated Retrofit Results By
= — Acknowledgment: Dr. Tianzhen Hong, LBNL Building Technology & Urban Systems Division
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Thank you.

Won Young Park (wypark@Ibl.gov)
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